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PART I

BULK ADHESION

ADHESION BETWEEN ATOMICALLY CLEAN METALLIC SURFACES*

by

T. Spalvlns

D.V. Keller.

* Text Presented; American Vacuum Society, Metallurgy Division Conference,

New York University, June 18, 19, 1962 and will be

published in the proceeding of the Symposium. The basis

of this publication was presented as a Master's Degree

Thesis by T. Spalvlns.



ADHESIONBETWEENATOMICALLYCLEANMETALLICSURFACES

Introduction

The results of two metals coming into contact with each other have

received considerable research attention under the various headings of friction,

pressure welding, sintering, fretting corrosion, electrical contact phenomena,

and the like. Although the mechanisms of these processes appear to be independent

on a macroscal_,_ there is considerable evidence that the atomic scale mechanisms

are quite similar. That is, in all cases the metallic substrate atoms of each

surface must be brought into in%imate contact before adhesion takes place (1).

For example, this study was inaugurated as an outgrowth of a friction research

program. There seems to be little doubt at this time that the general friction

mechanism proposed by Bowden's Group in England which involves the basic compo-

nents of a) Mechanical "Plowing" Action, and b) The Shearing of "Microwelds",

is well established and widely accepted. The "plowing" component is the result

of two surface asperites_,or irregularities, scraping over each other during sliding

while the welding component occurs as the result of metallic atoms of one

surface actually bonding to the atoms of the second surface. The mechanism of

formation of these microwelds as a function of composition, structure and

temperature has received little attention until recently since the microwelding

component could be reduced to a minimum through the use of lubricants which

prevented intimate contact of the surfaces. However, in high or ultra-high

lubricants l_e their effectiveness or tend to evapo-vacuIim applications, most

rate and the seizure problem is increased manyfold. This problem in itself

justified a closer look at the mechanism of metallic adhesion° The adhesion



of one metal to another was obserVedby several investigators as early as 1912 (2)

and studied by Bowden(3) in 1936. The study consisted of rubbing one metal

on a plate of similar material and observing the effect of surface impurities

on the degree of seizure. Nickel couples and platinum couples formed seizure

welds in evacuated systems° Since this time_ Bowden's Group and manyother groups

have reported results of vibrators, impactors_ or sliders operating upon a plate

in which the slider, or indentor, and plate were fabricated from various combi-

nations of materials and the apparatus exl0oSedto different atomospheres and vacuum

to lO-6Torr (mmHg). The conclusions suggested that the degree of seizure was a

function of couple compositlon_ atmosphere, mechanical properties, force, speed

of movementand surface contamination° In most cases, howeverj the mechanics

of the contact area appeared to be most important, rather than the surface chemistry

of the adhesion components°

A second approach to the problem was suggested recently by Rabinowicz (4)

in the form:

Wab = _a + _b - _ab

Where: Wab = Work of Adhesion

_i = Free surface energy

_ab = Interfacial free energy

which is similar to the equation suggested by Harkins in 1917 (5) for surface

wetting of solids. The equation as applied to simple solid adhesion, however,

appears to be somewhatoversimplified as will be illustrated later.

In order to shed a little more light on someof the problems Just outlined,
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an experiment was designed to bring two clean metallic surfaces into touch

contact at a near zero force and determine whether or not adhesion welding took

place. According to Farnsworth (6), Hagstrum (7) and other researchers (8) on

the preparation of atomically clean metallic surfaces, a pure surface can be

prepared with a relatively high degree of certainty, if the following condi-

tions are met:

a) Degassing of metallic sample at high tempeatures and low

pressuresj

b) Removalof impure surface layers.

c) Prevention of reformation of impure surface layers by gas

adsorption.

The first condition was satisfied by a prolonged anneal of the metallic components

in a system at a temperature Just below the fusion point and a pressure of at

least lO-6 Torr or by the use of vacuummelted materials. The second require-

ment was Impllmented in our experiments by removal of the surface layers within

a ultra high vacuumsystem by the use of argon ion bombardmentwith a subsequent

removal of the adsorbed argon. Readsorbtion of the gaseous elements was prevented

through the period of the experiment by operation at pressures in the range of

l0 -ll Torr as demonstrated by Redhead(9).

Experimental

Thel aratus designed for this study is shown in Figure I. The i x 2 cm

sample plate (A) and 0.3 cm (O.D.) indenter (B) were supported on pyrex insulator

tubes which were i_turn mounted on vac melted iron slugs (D). The iron slugs
h

could be moved + 3/4" by a magnet or solinoid.
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The UHV system (2 x l0 "ll Torr) was separated from the LV system

(1 x 10 -7 Tort) by a Granville-Philllps v_ (H). The LV system was used to eva-

cuate the UHV cell during the 450°C, 8 hour bake-out cycle and to move the high

purity argon gas from the getter flask (K) into the cell for ion bombardment.

The LV system consisted of a Duo-Seal mechanical pump and a two stage Hg diffu-

sion pump isolated from the UHV cell by two large volume, liquid nitrogen traps

(I)o The pressure within this system was measured by a CVC discharge guage

(aP -10og) (J).

Tank argon was gettered by evaporating about 200 mg of pure barium at

a pressure of 10 -6 Torr on the walls of a thoroughly degassed 500 ml flask

attached to the low vacuum system through a three-way stopcock. The flask was

then flooded with tank argon and allowed to stand over a period of hours, while

the impurities, water vapor, oxygen, nitrogen and etc. reacted chemically with

the barium°

Upon completion of bake-out cycle and the degassing of the filaments

(C and G) the G-P v_l_was closed and titanium was evaporated (G) until the

pressure within the cell was about 2 x l0 -ll Torr as measured with the inverted

magnetron guage (NRC -552, 752) (F). The titanium was evaporated from a tungsten

helix in short bursts such that the pyrex container remained cool_ thus, preven-

ting back diffusion of the adsorbed gases. About five flashes were required

to obtain the desired working pressure. Pure argon was then admitted to the cell

from the getter ballon to a pressure of about lO -3 Torr_ and, a potential of

about 4kv was placed between the indenter and sample plate. Power from the out-

side to the components was achieved by glass to metal through seals. Ionic

bombardment was continued and the polarity revised until both surfaces were bril-

King Laboratories Inc., Syracuse 3, New York
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liant in appearance. The amount of surface material removed was indicated by

the amount of sputtered material that cond-_ on the cell wall.

With the completion of ion bombardment the cell was reevacuated and

given a short bake-out cycle. Upon cooling a potential was placed between the

tungsten filament (C) and the test samples and several short bursts of electron

bombardment were used to strip the adsorbed argon from the test surfaces. When

lO -ll
the samples had cooled and the pressure returned to 2 x Torr, the indenter

was moved into near weightless contact with the plate by the manipulation of a

magnet. The initial force of contact was calibrated before hand in an open

system with a standard indenter (contact point radius of c_ure about 0.32 cm)

to a value of 5 grams or less. This force should be well within the bulk elastic

range of the metals studled_ but would exceed the elastic limit of surface

asperities.

Adhesion was measured as the force on a strain guage as the indenter was

removed from touch contact with the plates and later by careful metallographic

inspection of the contact area. When adhesion did occur, the %ndenter welded

to the plate and a considerable force was required for its removal. Visual and

metallographic inspection of the weld area left little doubt that a complete

adhesion weld did occur. When no adhesion occured 3 the surfaces of the plate

and indenter were undisturbed as evidenced by careful metallographic inspection

at magnifications of i000 x.

The results of tests on 8 couples in which a test consisted of at least

two complete separate runs are aslfollows:



Complete Adhesion

Fe - A1

Ag - Cu

Ni - Cu

Ni - Mo

No Adhesion

Cu - Mo

Ag - Mo

Ag - Fe

Ag - Ni

Ge - Ge (single crystal)

Discussion of Results

@Though the results of this study cannot be approached at a ematical

level they do suggest an adhesion mechanism which depends upon the physical

chemistry of the surfaces rather than the mechanical aspects of the contact area.

This appears to be in better agreement with the known properties of surfaces.

Since Harkln's_quation relates to the liquid state where atomic

structure may presumably be disregarded the application of the work of adhesion

equation to the solid state adhesion problem appears to be an over simplification.

For_Xample, if we substitute one half of the cohesive energy for the surface

energy in this equation as a crude first approximation as suggested by Adamson (i0),

and then determine the work of adhesion (Wab) between two pure (lll) planes
f---_

of germanium which are oriented to c_ on an atomic scale, we would
obtain

a zero work of adhesion. The result of such an occurancej however, should be

equivalent to the cohesive energy of the germanium.

When two different metals constitute the contacting surface, le. metal

and metal _, during adhesion, the system at the interface should be consid-

ered non-equilibrlum 3 since at room temperature relatively little bulk diffusion
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should occur. Thus an ideal interface would consist of a plane separating

pure A atoms and pure B atoms. Since it is unlikely that the lattice size

and / or structure of A and B will be identical, the strength of the bond

at the interface will not only depend upon the energy of A - B atomic bond,

but also on the degree of directionality inherent in this bond with respect

to the parent lattice and the normal number of nearest neighbors. If this

is assumed correct, then one would predict that strongly covalent bound materials,

generally requiring exact bond lengths and angles with less than 6 nearest

neighbors, should not respond to adhesion since precise crystallographic align-

ment at the interface would be almost impossible to attain° The single crystal

germanium plate and indenter oriented very nearly to the (lO0) directions

parallel to the contact directions showed no evidence of adhesion. Also in

agreement is the resistance of most covalently bound materials to powder com-

pacting below the atom diffusion temperature range.

The metallic bond_ on the other hand, with 8 or more nearest neighbors
m

appears to be quite capable of large deviations from the equilibrium position

without rupture, as exemplified by the high ductility of a metal in the pure

fh

state and the rete_s_on of ductility in solid solutions. This suggests that
V

the directionality requirements imposed on the atomic bonds in pure metals and

solid solutions are not as rigid as those of the covalent type such that a

nearest neighbor may be located some distance from its equilibrium position

and still retain a fraction of itsequilibriumbond energy. This argument is

agreement with observations of Averbac_i(ll) and electron theories ofin

!
metals°
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The energy of adhesion must therefore be a function of the loss of the

free surface energy of both free surfaces which in turn is a function of their

crystallographic orientation, a function of the neighbor orientation across

the interface, and a function of the nature and energy of the atomic bond between

species _ and species _. In the case where metal _A and metal --B from a

continuous series of solid solutions there appears to be little demand for

nearest neighbor order (ll); therefore, one would expect the free energy of

solution A into B

when adhesion occurs.

to add to the loss in free surface energy of both surfaces

The result should be a weld which would be strengthened

with theincrease of diffusion of atoms across the boundary, i.e. temperature

increase_ This case also serves to illustrate another weakness of the appli-

cation of Harkin's work of adhesion equation to this system since an equilibrium

interfacial free energy would be difficult tquf_ualize when A and B form a
W

continuous series of solid solutions. In co_rast to this, one may consider

totally immiscible phases; That is, metal _ has a positive free energy of

solution in Bo If this positive free energy exceeds the loss in surface free
m

• energy realized by the free surfaces in Interfacial formation, one would not

expect bonding across the interface. Again, interfacial equilibrium is not

achieved, or even initiated.

Since the behavior of metal A atoms in proximity to metal B atoms
m m

is most readily depicted by a phase diagram, these were used to establish a

J
cho_ce_he couples selected for investigation.

The couples: Fe / AI, Cu / _ Ni / Cu, Ni / Mo, all form some

sort oT intermediate phase denoting a negative free energy of bond formation

r_
and su_slquent adhesion as observed.

/



The couples: Cu / Mo, Ag / Mo, Ag / Fe, Ag / Ni, all form

immiscible mixtures with no adhesion observed.

In conclusion# if we apply this model to the friction problem, parti-

cularly in ultra high vacuum environments, total seizure, welding, should not

result if a proper selection of mating components is made, immiscible pairs.

The pure metal substrate under any conditions will probably be exposed

through the "plowing" action and the pure exposed metal, in a state of high

reactivity will bond to any available compatible atom. In sliding friction

the compatible atom may take the form of atmospheric gas atoms# surface scale

or another metal. The model also appears to be in agreement with observations

of grain boundary strengths, ie. large angle grain boundaries of solid solution

systems retain a large portion, if not all of the bulk strength of the system.

On the other hand as an ionic or covalent type intermediate phase is approached

the large angle boundaries become weaker, reaching a very brittle state at the

pure intermetallic compound, ie. NIAI or MgeSn.

lO
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Comments:

I. A determination of the minimum bake-out cycle of the vacuum system

described in the previous section was obtained. The UHV cell was evacuated

to about lO-5Torr with the Granville - Phillips value (H) open _r bake-out

times and temperatures indicated in Table i, The G.P. va_was then closed,

the cell allowed to cool and the titanlumgetter evaporated until a mlnlmum

final pressure was attained.

mentioned in the Figure i.

tron guage (F).

The UHV cell contained the component parts

The pressure was measured with the inverted magne-

TABLE 1

Bake-out Temperature
°C

i ( i I I i I _ I I

i00

220

3OO

None*

450 (Normal)

i , • , J , .....

. . ,

Time

Hours

6

lO

16

2O

16

Minimum Pressure

Torr

2 x 10 -5

8.5 x io-9

1.4 x l0-9

2 x i0-I0

2 x I0-II

* The 300°C test was allowed to stand with freshly evaporated titanium

another 20 hours. The excessive gas was finally adsorbed as indicated

by the lower pressure.

As is evident from Table I the titanium getter assembly is a very low

capacity unit capable of extremely low pressures; but unable to handle

12



large quantities of gas. Since the system is static and the conductance of the

system Is extremely high, the precision of the pressure measurements is limited

by the accuracy of the measuring equipment rather than the system design.

II A 1 x 2 x 3 cm plate of _filon_was placed in the system to estimate

the lowest pressure attainable with the pressure of an organic material. With-

out a bake-out the lowest pressure attainable by the techniques described in the

previous section was _ x l0 -5 Tort. With a five hour 200°C bake-out a pressure

of only 5 xlO "7 Torr was achieved. Further heatlngwas not recommended due

to possible contamination of the vacuum cell.

13
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DETERMINATION OF THE SURFACE ENERGY OF SILVER AT -187°C

Introduction

An accurate analysis of adhesion forces requires a reasonable knowledge

of the values of the surface energies of the pure free surfaces participating

in the adhesion as cited in part I of this report. The lack of these data is

apparent from the literature review submitted to NASA last year (1). Briefly,

techniques for the determination of solid surface energies of metals have been

developed only for temperatures within a few degrees of their respective mel-

ting point. The investigations rarely establish a standard surfac_ and_ as

a consequence_ the scatter of data is quite large. The temperature dependence

of solid surface tension is again limited to the atomic dlffusional range.

In order to establish accurate low temperature values of surface energy

a calorimetric technique (2) was presumed to be the direct approach. The tech-

nique will involve the change in surface area of a 0.05 g of high purity silver

wire to at least lO 5 cm 2 by vaporizing the wire in a calorimeter. In order

to eliminate the heats of adsorption of gases on the newly formed surfacej the

operation will take place at pressures below lO -9 Torr. For example_ an adsorbed

2
monolayer of gas on a 40 m surface corresponds to about lO 19 gas molecules

while at lO -9 Torr only lO +ll molecules / liter are present which indicates

that only about lO -6 o f a monolayer can form. The container for vaporization

will be silver to eliminate the heat of adhesion of the condensed silver to

the walls° The electrical energy to the filament for vaporizatlon, less the

heat of condensation as observed in the calorimeter 3 should yield the energy

15



necessary for surface formation. The surface area will then be measured by

SET adsorbtion curves using CH 4 as an adsorbant.

According to Allen et al (3) the surface area resulting from the vapo-

rization of copper to a substrate of glass was an inverse function of the sub_

strate temperature with -187°C providing a film of porous structure with an

-1
area of about 39.6 meters 2 gm . Since a maximum change in area will provide

a maximum energy differential, a liquid argon (or nitrogen) calorimeter was

designed as illustrated in Figure I. A second advantage provided in the use

of a liquid gas calorimeter lles in the fact that about 14.5 cc of gas, STP,

is evolved per calorie of heat input at the gas boiling point. Since the

evolved volume can be measured with an accuracy of at least + 0.5 cc3 the over-
m

all accuracy of the system should be about + 0.05 calories which is well within
w

the limits necessary for the proposed study. The apparatus, Figure I, consists

of a vaporization cell (i) attached through a Granville-Philips valise _(8) to

an ultra high vacuum (UHV) system (C) which is described adequately in Part I

of this report and through a break-off tip (9) to the SET gas metering system

for surface area determination (D). During the energy determination the BET

system is isolated and during the surface area determination the URV system (C)

will be isolated. The calorimeter consists of the vaporization cell immensed

in an argon bath (G) held at the boiling point by a resistance heater-thermometer.

Heat exchange with the atmosphere is reduced to a minimum by concentric con-

tainers of holding vacuum (H)_ liquid argon (I) and polystyrene insulation (J).

The super structure of the calorimeter was designed for simple disassembly

to facilitate a 450°C bake-out cycle of the entire URV system prior to silver

evaporation. When the pressure within the vaporizing cell has been established

16
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at about i0 -I0 Tort, the timer circuit to flash the tungsten filament from

a 12 volt battery will be activated. The energy to the filament will be

measured as discussed later. The heat emitted as silver vapor and radiant

energy from the short flash ( _ 1800°C) will evaporate liquid argon which

will leave the liquid argon chamber at the top and pass through a small furnace

at atmospheric pressure to adjust the gas temperature to 25°C. The gas will

be collected over mercury in a gas burette for final pressure temperature and

volume measurements. The calibrated heat leak in the calorimeter prior to

flashing may be used to adjust the final observed values for total heat reaching

the vaporization cell walls. Upon completion of the vaporization and energy

measurementsj the UHV system will be isolated and small known quantities of CH 4

will be admitted and the resulting pressures and temperatures recorded for the

surface area measurements. These data will be interpreted on modified _ET

diagrams (4) with an accuracy of about + 1%.
m

The estimated energy differential for the evaporation of 0.05 gm. silver

was about 0.54 cal. from a total heat evolution of about 75 cal. as based on

the following handbook values.

Silver

Surface Tension

Heat of Sublimation

Radiation Loss

Surface Change

1235 dynes/cm 2 (minimum value)

610 cal/gm

65 cal

105 cm 2

Provided a total error of about _ is maintained in the energy measurement,

the total error in the surface energy of about 10% should be expected. Since

18



no values of solid surface energy exist at or below room temperature and the

values assumed above are set for maximum error, the approach app_r_3to be Justi-

fied.

Experimental

The design of the calorimeter and component parts, shown in Figure I,

was such that the vaporization chamber (1), break-off tip (9)_ and the ultra-

high vacuum unit (C) could all be subjected to the usual 450°C bake-out. This

was accomplished by removing the sheet monel super structure at the soft solder

points marked (3). The monel support plates (0.062 in.) at the bottom are

silver soldered (4) to the 3/4" kovar glass-metal seal (2) and the 3 x 5 x

O°OlO in. silver soldered, silver-plated copper calorimeter (1) are permanent

installations which readily fit into the bake-out chamber. Heat leak in the

form of vaporized argon from (G) into the gas burette prior to the flashing of

the silver from the tungsten coil (7) is reduced by a series of insulators and

is measured carefully such that the final gas volume after the silver vapori-

zation may be adjusted for the heat leak rate during the run period. The power

to the 0.004" tungsten vapori_a_ng coil is supplied from a twenty-four volt

battery with a power control (R5) as shown in Figure 2.

The power is passed through a dummy load (R6) for adjustment of the two

high speed Brown Recorders (l_ 2) and stabilization of the source prior to

vaporizing the silver. To vaporize the silver a precision timer is excited for

a given time which switches the power from the dummy load , R6, to the non-

inductively wound filament (R4) in the calorimeter. The current during the vapo-

rization time is messed as the voltage drop across the precision resistance

(R1) and through S1 to the Brown instrument No.1. The voltage and during this

19
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period is also measuredas the voltage drop across a precision resistor (R3)

and plotted on another Bro_-ninstrument No. 2. The resistors RI, R2, and R3

are all of the high precision type with knownvalues to i part in 105 and kept

at a constant temperature. Since the accuracy of the Brown instruments is not

within the perscribed limit, after the current and voltage curves are produced

the knife switches, SI and $2, will be thrown to a standard voltage source (3)

which will be used to reproduce the existing curves. This would provide an

accuracy of at least + 0.01 millivolts since the reproducabillty of the Brown

recorder is within this limit whena full scale span is one millivolt. Both

Brown instruments are adapted for variable zero point (0 - 50 my) and variable

span (i - 50 my). On this basis the power input to the tungsten coil can be

estimated to within 0.05% which is in the range of the desired accuracy.

During tholing of the filament the heat carried to the calorimeter

walls in the form of silver vapor and radiant energy will transform the liquid

argon at its atmospheric pressure boiling point to gaseousargon at atmospheric

pressure. The conversion value is about 14.5 cc of gas (STP) per calorie of

heat evolved_ and,since about 75 calories of heat are anticipated spproximately

one liter of gas will be evolved. The gas is to be measured in a gas burette

of the type illustrated in Figure 3. Since the temperature of the gas as it

leaves the calorimeter will be about -180°C, the gas will pass through an

automatic heater (5) to raise the output stream temperature to at least 25°C.

The pressure will'tin this line (5) is maintained at atmospheric pressure by
i

raising or lowering the mercury column (3) with respect to the surface of the

mercury bath (i0)o The pressure at this point is measured with an oil manometer (4_
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Prior to the flashing of the silver the calorimete_eat leak rate is measured

with a similar gas burette (8) with a smaller volume; and when this is estab-

lished accurately the three way vat'to isolate this system and to initiate

the depicted system is manipulated. The time interval from this point is

recorded such that the heat leak rate correction may be applied upon completion

of the run°

Also prior to opening the three way llneval_j a l0 -5 Torr vacuum

is _ /_'-_x'/',/u_/_e'_from the slde arm (6).
placed above the column in the calibrated c91[_,,I )

This will raise a 76 cm column of mer_y up
the calibrated Hg/mm columll)

column (5). Excess mercury to adjust the bath level (lO) is supplied as illustra-

ted. The argon gas from the calorimeter will pass up the mercury column into

the calibrated volume, lower the mercury maniscus and force the bath (lO) to

overflow into (9) where it is collected for weighing. The change in mercury

column length due to pressure change is measured as grams of Hg and compared

to the calibration curve for a pressure measurement. The amount of gas at STP

produced from the calorimeter is estimated from the published PVT data on

argon and these data converted to calories produced in the calorimeter.

Upon completion of the energy measurements the Granville-Phillips va_e (8),

Figure l, to isolate the UHV pumping and pressure measuring system will be

closed to prevent adsorption of the CH 4 on the titanium getter cell. The BET

apparatus shown in Figure 3 for surface area measurement will be brought into

play by magnetically moving the iron slug (3) to smash the break-off tip (2).

Prior to the opening of the BET system the pressure within the calibrated

volume to the tip will be evacuated and flushed with CH 4 to a pressure of about

lO "6 Tort at which point the vacuum system (8, 9, 10) is isolated. Thus,
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the CH 4 at 10 -6 Torr in a known volume will expand into the calorimeter of known

volume and the pressure recorded_ A second quantity of CH 4 will then be isolated

in (12) through adjustment of the CH 4 leak (6), the pressure measured and the gas

again allowed to expand into the calorimeter. Through this technique a _ET

adsorption isotherm can be obtained from which a value of the surface area may

be obtained.

Progress Report

i. Calorimeter: The materials for the construction of this device are on

hand and ready to be assembled. The construction has been delayed in _@_i_of

the standardization of other components which is now underway.

2. Power Measuring Unit: A prototype has been constructed and used in the

manner discussed. A study of techniques to a_tain the desired error in watts

of about 0.02% consumed a considerable amount_time.

3. Gas Burette:

standardization°

The materials for the construction are on hand and ready for

4. EET Apparatus: The BET system has been constructed and is currently under-

going standardization utilizing the power unit to flash silver pellets into a

pyrex system at liquid nitrogen temperatures. Preliminary results suggest that

a larger surface area than estimated will be attained.

5 Ultra High Vacuum System: In all probability a new system will be construc-

ted since the two units currently available are in use (of Section I and Section _II).
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THE DETERMINATION OF INTERMEDIATE PHASES PRESENT

IN THE INTERFACE BETWEEN A METALLIC THIN FILM AN_

A METAL SUBSTRATE BY ELECTRON DIFFRACTION

Introduction

The ideal approach to the understanding of the crystal structure of

an adhesion interface would be to construct such an interface by allowing atoms

in a monolayer of the second metal to attain their equilibrium positions on

the pure metal substrate_ and then, determine these atomic positions. Succes-

sive layers would then be added until the bulk structure of the second metal

was realized. If diffusion was restricted by maintaining a low temperature,

a reasonable simulation of an adhesion weld could be reproduced. Current work

by Germer et al (1-3) at Bell Laboratories with low energy elec_/_o/diffraction

(lO0 volts) seems to place this ideal approach well within experimental reach;

however, before such an involved program is undertaken, a preliminary survey

study of this area will be made. The preliminary problem will involve the

deposition of a very thin film of nickel on an atomically clean substrate of

aluminum at various temperatures and attempt to determine the metallurgical

phases present by normal transmission election diffraction techniques.

The apparatus to deposit the film consists of an ultra high vacuum

cell (E) and system as described in Part I in which is placed a tungsten

filament which heats an nickel rod (B) to its boiling point as shown in Fig. I.

The nickel atom beam passes through a collimating shield (C) and deposits on

aluminum plate (D) which was cleaned by argon ionic bombardment as described

in Part I of this report. Due to the scatter within the atom beam the outer

edges of the aluminum plate should be covered with an extremely thin layer of
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nickel atoms while the region at the center should be reasonably thick. An

electron diffraction scan from the edges of the plate to the center should pro-

vide structural information at varying degrees of thickness of film.

Several specimens were prepared and mounted in a RCA - EMV - 3 electron

microscope adapted for reflection diffraction. The only adaptor available for

the diffraction operation was loaned to the University by RCA but not with a

HCA recommendation since the apparatus was out of date. Several diffraction

trials proved fruitless_ / an_substantiated the lack of interest in the adaptor.

Since the electron microscope unit can be used for transmission diffraction_

this approach is the next to be considered. This technique is approximately

the same as previously described, except that the aluminum plate before the de-

O O

position of nickel must be reduced in thickness to about 2000 A. The 2000 A

thickness is sufficiently thin to allow an electron bean to pass through the

specimen, to diffract and to excite a photographic plate.

The aluminum platej,035", was annealed for two hours at 350°C and

furnace cooled prior to exposure to the electroplating solution* recommended

by Battelle Memorial Institute. The edges of the aluminum plate were coated

to prevent _ntegration. The center _olved at a rate ofwith micro-stop

about O.OOl"/lO minutes. The details of the technique have been described

by Thomas (4). Six plates have been prepared and are awaiting the deposition

of the nickel layer# and subsequent electron diffraction analysis.

Preliminary X-Ray analysis of an aluminum layer on a nickel substrate

indicated the pressure of NIA1 with trace amounts of NiA13 or Ni2A13. The NiA1

is expected on the basis of free energy of formation data.

* Note: 45V/o H3P04, 41V/o H2SO 4, 14V/o H20; 75°C9 3 _: stainless steel cathode
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